follow CCP

Recent blog entries
popular papers

What Is the "Science of Science Communication"?

Climate-Science Communication and the Measurement Problem

Ideology, Motivated Cognition, and Cognitive Reflection: An Experimental Study

'Ideology' or 'Situation Sense'? An Experimental Investigation of Motivated Reasoning and Professional Judgment

A Risky Science Communication Environment for Vaccines

Motivated Numeracy and Enlightened Self-Government

Ideology, Motivated Cognition, and Cognitive Reflection: An Experimental Study

Making Climate Science Communication Evidence-based—All the Way Down 

Neutral Principles, Motivated Cognition, and Some Problems for Constitutional Law 

Cultural Cognition of Scientific Consensus

The Tragedy of the Risk-Perception Commons: Science Literacy and Climate Change

"They Saw a Protest": Cognitive Illiberalism and the Speech-Conduct Distinction 

Geoengineering and the Science Communication Environment: a Cross-Cultural Experiment

Fixing the Communications Failure

Why We Are Poles Apart on Climate Change

The Cognitively Illiberal State 

Who Fears the HPV Vaccine, Who Doesn't, and Why? An Experimental Study

Cultural Cognition of the Risks and Benefits of Nanotechnology

Whose Eyes Are You Going to Believe? An Empirical Examination of Scott v. Harris

Cultural Cognition and Public Policy

Culture, Cognition, and Consent: Who Perceives What, and Why, in "Acquaintance Rape" Cases

Culture and Identity-Protective Cognition: Explaining the White Male Effect

Fear of Democracy: A Cultural Evaluation of Sunstein on Risk

Cultural Cognition as a Conception of the Cultural Theory of Risk

« Response: An “externally-valid” approach to consensus messaging | Main | What is the *message* of real-world "scientific consensus" messaging? Ruminations on the external validity of climate-science-communication studies, part 3 »

WSMD? JA! How confident should we be that what one "believes" about global warming, on 1 hand, and political outlooks, on other, measure the same *one* thing?

This is the 983rd--I think; it could also be 613th--episode in the insanely popular CCP series, "Wanna see more data? Just ask!," the game in which commentators compete for world-wide recognition and fame by proposing amazingly clever hypotheses that can be tested by re-analyzing data collected in one or another CCP study. For "WSMD?, JA!" rules and conditions (including the mandatory release from defamation claims), click here.

@DaneGWendell, snickering at a bar graph (I pretty much agree: bar graphs almost always are a yucky way to graphically report interesting data!) A couple days ago I posted something on “what belief in global warming measures.” The answer, I said, was one’s a group-based sense of self-identity.

To support basic point I stated that (1) the Industrial Strength Measure of global warming risk perceptions, (2) a standard “belief in” human-caused global warming item, (3) the standard 5-point “liberal-conservative” ideology measure, and (4) the standard 7-point partisan self-identification display the psychometric properties of being observable indicators for a single latent variable.

A “latent variable” is something that can’t be observed directly. “Indicators” are things one can observe that correlate with the latent variable, typically because they are caused by it (that’s not strictly necessary; one can model a latent variable as being caused by indicators, or both indicators and latent variables as being caused by some other exogenous variable, etc.).

We can thus use the indicators as a substitute for the latent variable in modeling how the latent variable relates to other quantities of interest. When the indicators are aggregated appropriately, their “noise”—the parts of them that vary independently of their causal connection to the latent variable—cancel out, making the resulting scale or index an even more discerning measure of the latent variable (DeVellis 2012).

But before one can do that, one has to be confident the putative indicators really do have the properties one would expect of variables that are measuring the same thing.

I noted that the scale formed by combining the global-warming risk ISM, the “belief” in climate change item, and the two right-left political outlook ones displays a high “Cronbach’s α,” an inter-item correlation statistic that is conventionally understood to measure how reliably the aggregated items (the indicators) can be taken to be measuring any latent variable.

But a curious & reflective guy named @DanegGWendell correctly noted—on twitter—that a high α doesn’t by itself guarantee that the aggregated items are measuring a single latent variable. 

Particularly where one has a large number of items, a scale formed by summing item responses can display a reasonably high α when in fact they are measuring two or maybe even more correlated latent variables.

Linear factor analysis is one of the conventional ways to assess the “dimensionality” of a scale. Conceptually, factor analysis estimates how much variance in the responses to the items can be accounted for by positing a single factor or latent variable, how much of the remaining variance can then be accounted for by positing a second, and so forth.

@DaneGWendell was interested in what a factor analysis of the global warming ISM, global warming belief, and political outlook measures would reveal.

Good question & worthy of a WSMD, JA!

To start, here’s the item “correlation matrix.”  The coefficients express polychoric correlation, which is more appropriate than pearson correlation where, as here, one wants to do a factor analysis of "mixed" data (the ISM is a multi-point rating scale, the political outlook measures multi-point Likert items, and the “belief in” measure a dichotomous item). 


Here is the factor analysis of that correlation matrix: 


There are a variety of conventional “rules of thumb” used to assess factor structure, all of which suggest that the four items here are appropriately treated as forming a “unidimensional” (i.e., one latent variable) scale.

E.g., the ratio of the “eigenvalues” of the first factor (which explains 90% of the variance in the items) and of the second (which explains almost all the rest) is “greater than 3.”

In addition, the eigenvalue for the second factor is “less than 1.”

Or if we look at a “scree plot,” which plots the eigenvalue of successive factors, there is an “elbow” at 2.

Maybe you can tell, but I find this way of proceeding, which is exactly what you'll see in most articles or textbooks, pretty mechanical and unmotivated. 

Call me silly, but I think it makes more sense to use judgment in assessing the covariance structure to determine whether the items can plausibly be understood to measuring only one latent variable. 

Actually, it's been shown by people who are actually thinking about what they are doinjg and why that treating a two-dimensional scale as one dimensional often has no adverse affect on the accuracy of that scale as a measure of a single latent variable if the two factors are very closely correlated (e.g., Bolt 1999). 

Also, the various statistical techniques and rules of thumb (pragmatic fit indexes etc.) that researchers typically use to investigate scale "dimensionality" have been described as essentially "completely worthless" ((Embretson & Reise 2000, p. 228).

But in fact, that's an unfair appraisal.  They are useful-- but not if used mechanically, as if (to quote Chris Hedges), "the answer to the question" whether a group of items can be treated as observable indicators of a single latent variable were the same as asking, “I mean, what exact buttons do I have to hit?”

"There is utility" (to paraphrase Chris Hedges), in these techniques "in that they may provide supporting evidence that a data set is reasonably dominated by a single common factor" (Embretson & Reise 2000, p. 228).

Or in other words, factor analysis, cronbach's α, and various related statistical measures are tools one can use to equip judgment to do a more reliable job in helping to form valid inferences. 

But treated as substitutes for judgment, they are "completely worthless" (Hedges, of course, 1999, 2000, 2006, 2012, 2014, 2014).

So applying some judgment, what am I trying to say here, and how confident should I be about that given this particular set of observations?

Basically, I’m saying that the 4 items are all measuring the “same thing”—a latent disposition to form coherent stances on matters political. The responses to the “climate change” items are expressions of that disposition—are caused by it—in the same way as responses to the liberal-conservative ideology and party self-identification measures.

The factor analysis is consistent with that. 

But wouldn’t it be more satisfying if I showed this interpretation was more convincing than some alternative plausible hypothesis?

One might think—very reasonably!—that expressions of risk toward environmental hazards reflect a latent disposition, one correlated with but in fact distinct from the sense of identity that one might think political outlooks measure. 

A good alternative hypothesis, then, would be that “climate change” risk perceptions and related factual beliefs are better understood as indicators of some “environmental concern” disposition that is connected to but actually not the "same thing" as the "self-identity" disposition indicated by liberal-conservative ideology and party self-identification.

That alternative hypothesis would have been supported, for sure, if variance in these items had turned out to be more convincingly explained by two discrete factors, one comprising the political outlook items and the other the climate-change items.

But an even more convincing test would be to add some additional “environmental risk concern” items to the “mix,” and then see what happens.

Here is  a covariance matrix that adds to the four items in question ISMs for “artificial food colorings,” “use of artificial sweeteners in diet soft drinks,” and “genetically modified food.”

The signs of the items are consistent with what one might expect if one beleived both that environmental risk perceptions will cohere with each other and that political outlooks will correlate with environmental risk perceptions.

But the correlations between the artificial food coloring, artificial sweetener, and GM food ISMs, on the one hand, and the climate-change items, on the other, are much smaller than the correlations between the climate-change items and the political outlook ones, on the other!

That makes me think it's less likely that global warming items are measuring the "same thing" as those other risk items than it is that the global warming items are indeed measuring the "same thing" as the political outlook items.

Now consider the factor analysis of these 7 items:

The relative proportions of variance explained by the first two factors—0.6 and 0.3—is much closer than was the case for the two factors in the first analysis (0.9 and 0.1).

By the same token, the rule-of-thumb criteria—ratio of eigenvalues (about 2), the absolute size of the second factor’s eigenvalue (> 1), and the scree plot (“elbow” at 3 rather than 2) all support treating the items as measuring two discrete factors.

More importantly in my judgmental opinion, if we look at the “factor loadings”—essentially the correlations between the factor and the indicated items—we can see that the covariance structure looks as you might expect if there 2 latent variables being measured here rather than 1.

The first is one consisting of the global warming ISM, the  “belief in” climate change item, the liberal-conservative ideology item, and the partisan self-identification item.

That's a discrete factor corresponding to the hypothesized latent disposition for which those four variables are all indicators.

The second factor loads much less heavily on those four items and much more so on the food coloring, artificial sweetener, and GM food risk ISMs.

We might, then, want to treat the latter three variables as a scale that measures a concern with environmental risks, or maybe with “food risks” in particular.

The Cronbach’s α for a scale that aggregates those three items would be 0.76.  Usually 0.70 is considered “good.”

The Cronbach’s α for a scale formed by aggregating the climate-change and political outlook items that form the first factor would be 0.85. 

I'm happy about that, though, less b/c I cleared some arbitrary statistical threshold than b/c it just is the case that w/ a "low" Cronbach’s α, one won't be able to connect variance in the scale to variance in other quanitities of itnerest.

There is a very modest positive correlation between the scales of 0.15 (p < 0.01).  In other words, the identity disposition explains some of the variance in this “food risk” disposition, but not much (that's kind of interesting, don't you think? but the 14 billion readers of this blog are among the select few who already know that it's not true that GM foods divide the US general public along political lines).

Well there you go!

I’m even more confident than I would have been had I not done these analyses, or had I just done a recipe-book factor analysis of the four items I hypothesized form a single latent “identity” variable and stopped there.

But that’s all I am: more confident than I’d be otherwise.

Also, not as confident as I could be if I were to do even more things that admit of meaningful assessment than the still too recpie-bookish application of factor analysis I just performed.

And for sure not so confident that I wouldn't change my mind if I were shown meaningful evidence that seemed to support a different conclusion the factor analyses notwithstanding.

The idea that one can perform some set of tests in a mechanical, judgment-free fashion and get “the answer” on questions about how elements of cognition work is commonplace, but wrong.


Bolt, D.M. Evaluating the Effects of Multidimensionality on IRT True-Score Equating. Applied Measurement in Education 12, 383-407 (1999).

DeVellis, R.F. Scale development : theory and applications (SAGE, Thousand Oaks, Calif., 2012).

Embretson, S.E. & Reise, S.P. Item response theory for psychologists (L. Erlbaum Associates, Mahwah, N.J., 2000).


PrintView Printer Friendly Version

EmailEmail Article to Friend

Reader Comments (5)

Dan--first, I am a big admirer of your work and I'm glad you took up my question from Twitter. I've followed your research for a while. Actually, the motivated numeracy/polarization branch of your interests helped motivate a survey experiment study where we looked at how "belief bias" in logical reasoning works in liberals and conservatives.

Second, I think you do make your case better with this analysis. I'm (more) convinced there is one latent construct underneath than I was before. We don't have a real sense of what that latent factor is, but that's the point of your "blog/paper" here... to make an argument that it's one factor and to defend the idea that this factor is group-based self-identity.

We (social scientists) still struggle to figure out attitude formation and political ideology. Is it elite rhetoric? Is it baseline/bedrock political values? Is it biological predispositions? Is it morality, such as moral foundations theory? Is it cultural cognition and group-based self-identity? All of these stories work to some extent, which is why my starting point for talking about attitude formation is that it's a complex multidimensional mess that includes biological factors and personality dispositions interacting with a vibrant environment. And if you buy that last sentence, it becomes hard to theoretically accept that, say, attitudes on global warming are all one underlying latent construct about identity protection. (Political ideology itself is clearly multidimensional, so the idea of one multidimensional collection of latent variables is itself part of one big latent variable is tough to swallow.) But, we should let the data speak and I'm ready to be persuaded.

June 20, 2014 | Unregistered CommenterDane Wendell


Wow-- great Bayesian response. We both agree on likelihood ratio -- only our priors divide us!

Which means that if we iterate, we'll converge, right? We should identify additional tests that we both agree would have LR ≠ 1! Be fun to work through this, for as I indicated, I think the "industry standards" on dimensionality analysis reflect pervasive WBDIP? [what button to I push] disease.

But I think before we started, we have to be sure we are in agreement on some premises.

The most basic, for me, is that there's no such thing as a "unidimesnional" factor or latent variable!

This not an exercise in mathematics. It is a project to make sense of the world empirically.

We must therefore be ruthlessly instrumental about models, concepts, & constructs & all matters theoretical. All all just tools or heuristic aids to improve our ability to explain, predict and manage non-observables.

To say "but is that reallllllllllllly what the non-observable looks like" when someone draws the sort of picture that one of these theory elements is is to misunderstand what is going on.

Similarly w/ regard to statistical methods. They are tools/heuristics that guide and improve causal inference in connection w/ the explanating, predicting, & influencing we are trying to do. The methods have to be cogent -- they have to map onto valid causal theories & make sense. For sure they have to enable replication.

But it's not the case that there's a "right" approach on any particular thing otherwise. This is not mathematics; it is empiricism.

If you accept all of this, then, for our project to proceed we would have to agree, at least at some operationally appropriate level of generality, what our empirical goal is.

It can't be to figure out whether there reallllllly is in the universe a latent variable w/ indicators blah, blah, blah & blah.

It also can't be to answer the question "is ideology reallllllllllllllllly unidimensional? if not, then how many dimensions does ideology reallllllllllly have?"

B/c those are all non-sense questions.

The goal is to figure out if proceeding *as if* some set of observable things were indicators of a single latent variable (itself something we can do only if we proceed *as if* there were such things as "latent variables" & "indicators"--there aren't; these are all collections of Bohr-Ruitherford atoms) is a sensible way to for us to explain, predict, & prescribe.

That, too, really only makes sense in relative terms; is it more sensible to do that than to do something else?

I'm going to stop here & see if you are anywhere within sight at this point!

June 21, 2014 | Unregistered Commenterdmk38

Dan - I'm another skeptic of your argument, but I find your data pretty interesting. Naturally, I have a few questions (does the WSMD, JA! ever end?). First, I'm a little worried you're setting yourself up to find only one factor because you only have a total of four indicators. My understanding of EFA is that you need at least three indicators per theorized latent variable, otherwise it's going to be hard to separate out the factors. Do you have other indicators you could use, such as favorability of the parties or ideological groups?

Second, I like your point above that seems to be arguing for a pragmatic approach here, saying sure we could pull out lots of factors if we try really hard, but what does it buy us? So, in that spirit, maybe there's a better way to go about exploring this question. It might be worth examining whether GW beliefs predict other environmental attitudes better than political identity, or whether GW beliefs add any meaningful predictive power above and beyond political identity.

June 23, 2014 | Unregistered CommenterScott Clifford


a. Take a collection of >6 items that you know form two discrete factors only modestly or weakly correlated w/ one another -- i.e., "2 differen (unobserved) things.". Select 4 of the items -- 2 that load on one factor, two thta load on the other. When you run a factor analysis, you should still get 2 factors. You might w/ good reason believe that b/c there are only 2 items per factor that treating each as a scale is not very useful; maybe you'd rather just sum each set or something. But if the question is whether the *4* items are plausibly treated as measuring *1* latent variable -- via a factor score or a summated Likert scale -- the result of the factor analysis would suggest the answer, "nope; these behave more like 2 sets of indicators for 2 different latent variables." Accordingly, if I have 4 items, & I am trying to decide which is more likely to be true -- that they are all indicators of a single latent variable or they are in fact 2 sets of 2 indicators of 2 latent variables -- a result that shows that 90% of the variance in the covariance is explained by positing *1* factor is pretty good reason for concluding the former.


b. The question, though, is what's the question? The factor analysis occurs inside of a practical form of analysis or argument. I am discussing w/ somoene, essentially, the question whether it makes sense to treat items that she says support the inference of "bipartisan support for action on climate change!" as really measuring some attitude toward "climate chnage." I show, using factor analysis, that one *could* justifiably treat (a) 2 political-outlook items & (b) "belief in climate change" & "risk posed by climate change" as a nice measure of left-right political outlooks -- one even more discerning of whatever unobserved thing it is that "liberal-conservative" & "partisan self-id" can be understood to measure. I say, "unless you want to tell me that the questions 'do you believe in human-caused global warming' & 'how large a risk does global warming pose to health, prosperity, etc.' are all *invalid* measures of division on climate change, then the items you are saying show 'bipartisan' support necessary are.' " That's that. I'm not advancing any other big claims -- e.g., "ideology is best treated as a single latent variable" or "global warming items will always be more justifiably treated as indicators of 'ideology' than anything else!" If you think I *have* to say big abstract things like that to use factor analysis in my conversation with the person I posited I was talking to, then we have very very very different philosophies of what the relationship is between statistics & theories generally, on the 1 hand, and empirical proof, on the other.

What do you think?

c. If you think you are basically w/ me on this, then tell me what I & my interlocutor might do -- w/ factor analysis or some other form of statistical analysis -- to have even more or less reason than we have now to believe that the position I'm advancing in my discussion is "more likely true" than my interlocutor's. B/c I agree I don't want to be too easy on myself!

June 28, 2014 | Registered CommenterDan Kahan

I saw the most recent Pew poll on support for either of the parties in the I/P conflict and thought of you

The degree to which the five ideologies support the Palestinians, and reject the Jewish homeland, perfectly correlates with the degree of alarm at human altering of the climate. So are the right supporting the state of Israel's action based on emotion and the Progressives driven by analytic best outcome thought?

July 19, 2014 | Unregistered CommenterDocMartyn

PostPost a New Comment

Enter your information below to add a new comment.

My response is on my own website »
Author Email (optional):
Author URL (optional):
Some HTML allowed: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <code> <em> <i> <strike> <strong>